Mysql性能优化

explain主要用于sql语句中的select查询,可以显示的查看该sql语句索引的命中情况,从而更好的利用索引、优化查询效率。

先解析一条sql语句,看出现什么内容

EXPLAIN SELECT s.uid, s.username, s.name, f.email, f.mobile, f.phone, f.postalcode, f.address FROM uchome_space AS s, uchome_spacefield AS f WHERE 1 AND s.groupid=0 AND s.uid=f.uid

Explain语法如下:explain [extended] select ...
其中extended是选用的,如果使用的extended,那么explain之后就可以使用show warnings查看相应的优化信息,也就是mysql内部实际执行的query。

  1. id

SELECT识别符。这是SELECT查询序列号。这个不重要,查询序号即为sql语句执行的顺序, 这个不重要,查询序号即为sql语句执行的顺序,看下面这条sql

EXPLAIN SELECT * FROM ( SELECT* FROM uchome_space LIMIT 10 ) AS s

它的执行结果为

2.select_type

select类型,它有以下几种值

2.1 simple 它表示简单的select,没有union和子查询

2.2 primary 最外面的select,在有子查询的语句中,最外面的select查询就是primary,上图中就是这样

2.3 union union语句的第二个或者说是后面那一个.现执行一条语句,

explain 
select * from uchome_space limit 10 union select * from uchome_space limit 10,10

会有如下结果

2.4 dependent union UNION中的第二个或后面的SELECT语句,取决于外面的查询

2.5 union result UNION的结果,如上面所示

还有几个参数,这里就不说了,不重要

3 table

输出的行所用的表,这个参数显而易见,容易理解

4 type

连接类型。有多个参数,先从最佳类型到最差类型介绍 重要且困难
4.1 system

表仅有一行,这是const类型的特列,平时不会出现,这个也可以忽略不计

4.2 const

表最多有一个匹配行,const用于比较primary key 或者unique索引。因为只匹配一行数据,所以很快

记住一定是用到primary key 或者unique,并且只检索出两条数据的 情况下才会是const,看下面这条语句

explain SELECT * FROM `asj_admin_log` limit 1

结果是

explain SELECT * FROM `asj_admin_log` where log_id = 111

log_id是主键,所以使用了const。所以说可以理解为const是最优化的

4.3 eq_ref

对于eq_ref的解释,mysql手册是这样说的:"对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型。它用在一个索引的所有部分被联接使用并且索引是UNIQUE或PRIMARY KEY"。eq_ref可以用于使用=比较带索引的列。看下面的语句

explain select * from uchome_spacefield,uchome_space where uchome_spacefield.uid = uchome_space.uid

得到的结果是下图所示。很明显,mysql使用eq_ref联接来处理uchome_space表。

目前的疑问:

   4.3.1 为什么是只有uchome_space一个表用到了eq_ref,并且sql语句如果变成

   explain select * from uchome_space,uchome_spacefield where uchome_space.uid = uchome_spacefield.uid

   结果还是一样,需要说明的是uid在这两个表中都是primary

4.4 ref

对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取。如果联接只使用键的最左边的前缀,或如果键不是UNIQUE或PRIMARY KEY(换句话说,如果联接不能基于关键字选择单个行的话),则使用ref。如果使用的键仅仅匹配少量行,该联接类型是不错的。

看下面这条语句

explain select * from uchome_space where uchome_space.friendnum = 0

得到结果如下,这条语句能搜出1w条数据

4.5 ref_or_null

该联接类型如同ref,但是添加了MySQL可以专门搜索包含NULL值的行。在解决子查询中经常使用该联接类型的优化。


上面这五种情况都是很理想的索引使用情况


4.6 index_merge 该联接类型表示使用了索引合并优化方法。在这种情况下,key列包含了使用的索引的清单,key_len包含了使用的索引的最长的关键元素。

4.7 unique_subquery

4.8 index_subquery

4.9 range 给定范围内的检索,使用一个索引来检查行。看下面两条语句

explain select * from uchome_space where uid in (1,2)

explain select * from uchome_space where groupid in (1,2)

uid有索引,groupid没有索引,结果是第一条语句的联接类型是range,第二个是ALL.以为是一定范围所以说像 between也可以这种联接,很明显

explain select * from uchome_space where friendnum = 17

这样的语句是不会使用range的,它会使用更好的联接类型就是上面介绍的ref

4.11 ALL 对于每个来自于先前的表的行组合,进行完整的表扫描。如果表是第一个没标记const的表,这通常不好,并且通常在它情况下很差。通常可以增加更多的索引而不要使用ALL,使得行能基于前面的表中的常数值或列值被检索出。

5 possible_keys

提示使用哪个索引会在该表中找到行,不太重要

6 keys

MYSQL使用的索引,简单且重要

7 key_len

MYSQL使用的索引长度

8 ref

ref列显示使用哪个列或常数与key一起从表中选择行。

9 rows 显示MYSQL执行查询的行数,简单且重要,数值越大越不好,说明没有用好索引

10 Extra 该列包含MySQL解决查询的详细信息。

10.1 Distinct MySQL发现第1个匹配行后,停止为当前的行组合搜索更多的行。一直没见过这个值

10.2 Not exists

10.3 range checked for each record

没有找到合适的索引

10.4 using filesort

MYSQL手册是这么解释的“MySQL需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行。”目前不太明白

10.5 using index 只使用索引树中的信息而不需要进一步搜索读取实际的行来检索表中的信息。这个比较容易理解,就是说明是否使用了索引

explain select * from ucspace_uchome where uid = 1的extra为using index(uid建有索引)

explain select count(*) from uchome_space where groupid=1 的extra为using where(groupid未建立索引)

10.6 using temporary

为了解决查询,MySQL需要创建一个临时表来容纳结果。典型情况如查询包含可以按不同情况列出列的GROUP BY和ORDER BY子句时。


type显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:

system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL


  • like 不能用索引?

尽量减少like,但不是绝对不可用,”xxxx%” 是可以用到索引的,

想象一下,你在看一本成语词典,目录是按成语拼音顺序建立,查询需求是,你想找以 “一”字开头的成语(”一%“),和你想找包含一字的成语(“%一%”)

除了like,以下操作符也可用到索引:

    <,<=,=,>,>=,BETWEEN,IN

<>,not in ,!=则不行
  • 复合索引



比如有一条语句是这样的:select * from users where area=’beijing’ and age=22;

如果我们是在area和age上分别创建单个索引的话,由于mysql查询每次只能使用一个索引,所以虽然这样已经相对不做索引时全表扫描提高了很多效

率,但是如果在area、age两列上创建复合索引的话将带来更高的效率。如果我们创建了(area, age,salary)的复合索引,那么其实相当于创建了(area,age,salary)、(area,age)、(area)三个索引,这被称为最佳左前缀特性。
因此我们在创建复合索引时应该将最常用作限制条件的列放在最左边,依次递减。

  • or

  • 子查询

  • 数据库结构优化

  • 插入数据的优化

-插入速度 提高

  • 7 服务器优化

---

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20可以这样查询:select id from t where num=10 union all select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:select id from t where name like '李%'若要提高效率,可以考虑全文检索。

  1. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100应改为:select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)='abc' ,name以abc开头的id
应改为:

select id from t where name like 'abc%'

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

  1. 索引并不是越多越好,索引固然可 以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

  2. 应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select from t ,用具体的字段列表代替“”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

  1. 与临时表一样,游标并不是不可使 用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。